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Topological magneto-optical effects and their
quantization in noncoplanar antiferromagnets
Wanxiang Feng 1,2, Jan-Philipp Hanke 2,3, Xiaodong Zhou1, Guang-Yu Guo4,5, Stefan Blügel 2,

Yuriy Mokrousov 2,3 & Yugui Yao1*

Reflecting the fundamental interactions of polarized light with magnetic matter, magneto-

optical effects are well known since more than a century. The emergence of these phe-

nomena is commonly attributed to the interplay between exchange splitting and spin-orbit

coupling in the electronic structure of magnets. Using theoretical arguments, we demonstrate

that topological magneto-optical effects can arise in noncoplanar antiferromagnets due to the

finite scalar spin chirality, without any reference to exchange splitting or spin-orbit coupling.

We propose spectral integrals of certain magneto-optical quantities that uncover the unique

topological nature of the discovered effect. We also find that the Kerr and Faraday rotation

angles can be quantized in insulating topological antiferromagnets in the low-frequency limit,

owing to nontrivial global properties that manifest in quantum topological magneto-optical

effects. Although the predicted topological and quantum topological magneto-optical effects

are fundamentally distinct from conventional light-matter interactions, they can be measured

by readily available experimental techniques.
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Magneto-optical effects, referring to changes in the
polarization state of light upon interacting with mag-
netic matter, are one of the most basic phenomena in

solid-state physics. In 1846, Faraday discovered the first magneto-
optical phenomenon for which the plane of linearly polarized
light is rotated after passing through a piece of glass exposed to an
external magnetic field1. Thirty years later, Kerr found the cor-
responding effect in the reflected light2. Magneto-optical effects,
represented by the Faraday and Kerr effects, not only helped in
establishing Maxwell’s theory of electromagnetism in the late 19th
century but provided also an exquisite technology for modern
high-density data storage since the 1950s of last century3,4. Now,
they have matured into appealing and widely used spectroscopic
tools used to, e.g., visualize magnetic domains5,6, detect and
manipulate magnetic order7,8, and measure ferromagnetism in
two-dimensional (2D) systems9,10.

The microscopic origin of the described magneto-optical effects
has long been deemed to be the interplay between band exchange
splitting (BES) and spin–orbit coupling (SOC)11–18. As an
essential consequence of the Zeeman effect, BES is induced by
either an external magnetic field or the spontaneous magnetiza-
tion of magnetic materials. SOC further splits the bands so that the
orbital motion of spin-polarized electrons couples to incident
polarized light. The simultaneous presence of BES and SOC results
in a different response to left-circularly and right-circularly
polarized light in magnetic media as manifested in magneto-
optical Faraday and Kerr effects. This microscopic mechanism has
been the sole interpretation of magneto-optical effects until now.

Here, by using model arguments and first-principles calcula-
tions, we demonstrate that topological magneto-optical (TMO)
effects, without any reference to BES or SOC, can arise in fully
compensated noncoplanar antiferromagnets (nc-AFMs). The
spectral integral of magneto-optical conductivity as well as the
ones of Kerr and Faraday rotation angles, being spectroscopic

fingerprints, identify the TMO effects essentially from their
conventional cousins. Moreover, the quantum versions of these
topological light–matter interactions, termed quantum topologi-
cal magneto-optical (QTMO) effects, can be realized in insulating
nc-AFMs with nontrivial topology in momentum space, for
which the Kerr rotational angle is quantized to a certain value
close to 90� and the Faraday rotation angle amounts to the
product of Chern number and fine structure constant. The phy-
sical origin of TMO and QTMO effects is uncovered to be the
nonzero scalar spin chirality (schematically shown in Fig. 1a),
which differs fundamentally from any conventional light–matter
coupling. The measurement of TMO and QTMO effects is fea-
sible by the current experimental techniques.

Result
TMO effects. Let us start with the TMO effects by considering the
example of a three-dimensional (3D) face-centered-cubic (fcc)
lattice, shown in Fig. 1b. We focus on the so-called 3Q spin
structure19, for which four magnetic sublattices form of a regular
tetrahedron, and the spin on each sublattice points to the center
of the tetrahedron, resulting in a fully compensated nc-AFM
order. To describe conduction electrons interacting with the
localized spin moments Si (jSij ¼ 1), the Hamiltonian is expres-
sed by the Kondo lattice model:

H ¼ �
X
hiji

tijc
y
iαcjα � J

X
i

cyiασαβciβ � Si: ð1Þ

Here, cyiα (ciα) is the electron creation (annihilation) operator on
site i with spin α, σ is the vector of Pauli matrices, tij denotes the
nearest-neighbor transfer integral, and J is the on-site exchange
coupling.

For the 3D fcc lattice, a proper strain can be used to generate a
nonzero fictitious magnetic field19, which effects the magneto-
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Fig. 1 Topological light–matter interactions in chiral magnets. a Sketch of topological light–matter interactions in a minimal chiral magnet comprising
three neighboring noncoplanar spins. bf is the fictitious magnetic flux generated by the finite scalar spin chirality. Topological magneto-optical Kerr and
Faraday effects are induced by the fictitious magnetic flux bf rather than by the nonzero net magnetization. b The 3Q noncoplanar antiferromagnet on a 3D
fcc lattice. The numbers 1–4 label the four magnetic sublattices, which are the corners of a tetrahedron (gray color). Blue and gray arrows indicate the
directions of the localized spin Si and the fictitious magnetic flux bf , respectively. c The 3Q nc-AFM on a 2D triangular lattice. It is the (111) cross-section of
the 3D fcc lattice, indicated by cyan color in b. Dashed cyan lines mark the 2D unit cell. � indicate the directions of the bf on each triangular plaquette.
d The unit sphere is spanned by the spins on four sublattices that are parallel transported to have a common origin. The dashed line indicates one of the C2

rotation axes in spin space.
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response properties of the system and ultimately leads to
activating the TMO effect. Considering each face of the
tetrahedron, the three noncoplanar spins provide a fictitious
magnetic flux bf / t3χijkn̂f , where t3 ¼ tijtjktki is the successive
transfer integral along a loop i ! j ! k ! i, χijk ¼ Si � ðSj ´ SkÞ is
the scalar spin chirality19–21, and n̂f is a unit vector normal to the
face. This fictitious magnetic flux essentially comes from the
orbital motion of electron because a Berry phase, being equivalent
to the solid angle spanned by three neighboring spins, is picked
up by the electron hopping along a closed loop on the triangular
plaquette. The total fictitious magnetic field in the 3D fcc lattice is
the vector sum of the magnetic fluxes on the four faces of the
tetrahedron, i.e., B ¼ P4

f¼1bf . In the unstrained case, B is zero
because the four fluxes cancel each other exactly (Fig. 1b). After a
uniaxial strain, characterized with a parameter δ (see the
“Methods” section), is introduced along the [111] direction, the
fictitious field is B ¼ Bn̂½111� with B≠ 0 and the unit vector n̂½111�
pointing into the [111] direction. The effect of this fictitious
magnetic field is equivalent to the nonzero net magnetization in a
ferromagnet or the external magnetic field applied to a non-
magnet, and thus the response of a 3D fcc nc-AFM to the left-
circularly and right-circularly polarized lights is inevitably
different.

The role of strain can be understood in a more fundamental
way from the symmetry point of view. In fact, the shape of linear
response tensors can be fully determined by a group-theoretical
analysis22. The magnetic point group of the 3D fcc nc-AFM is
m�3m023, which suppresses the magneto-optical conductivity
σxyðωÞ. The strain considered here removes all the symmetries
containing fourfold rotations and the magnetic point group is
lowered to �31m0. As a consequence, this symmetry breaking
facilitates nonvanishing magneto-optical conductivity, i.e.,
σxyðωÞ ¼ �σyxðωÞ≠ 0. Note that the conductivity tensor σ is a
coordinate-dependent quantity. For the convenience, we choose
the [1�10], [11�2], and [111] directions of the fcc lattice as the x, y,
and z axes, respectively (Fig. 1). Owing to the finite fictitious
magnetic field that originates from the chiral spin structure in the
strained case, the emergence of the transverse conductivity tensor
components does not rely on the presence of SOC.

To confirm the symmetry analysis, we explicitly calculate the
magneto-optical conductivity using the Kubo formula24,

σxyðωÞ ¼ _e2
Z

d3k

ð2πÞ3
X
n≠n0

ðf nk � f n0kÞ

´
Im ψnk

� ��vx ψn0k

�� �
ψn0k

� ��vy ψnk

�� �h i

ðϵnk � ϵn0kÞ2 � ð_ωþ iηÞ2 ;

ð2Þ

where vi is the ith Cartesian component of the velocity operator, ϵnk
is the energy of the nth band at Bloch vector k, f nk is the
Fermi–Dirac distribution function, _ω is the photon energy, and η is
an adjustable smearing parameter. Figure 2b shows the real and
imaginary parts of σxyðωÞ computed for the model given by Eq. (1).
It is evident that σxyðωÞ turns out to be nonzero if the strain is
applied (δ ≠ 1), and it increases with increasing jδ � 1j. Upon
inverting the direction of the applied strain, σxyðωÞ changes its sign
as the texture-induced emergent field is reversed. Since both σRxyðωÞ
and B are proportional to δ, as seen in Fig. 2c, the relation σxyðωÞ /
B can be verified. Based on nonzero σxyðωÞ, the coupling of this
magnetic field to polarized light can manifest in Kerr and Faraday
effects in chiral AFMs as described by Eqs. (8) and (9) below.

In the absence of SOC, the bands are spin degenerate regardless
of the strain (Fig. 2a). This degeneracy is guaranteed by a
fractional lattice translation combined with a pure spin rotation.

For example, the sublattices are exchanged (1 $ 2; 3 $ 4) under
a fractional translation ða=2; b=2; 0Þ along the [110] direction.
After that, a spin rotation around the C2 axis (Fig. 1d) restores the
initial state (S1 $ S2; S3 $ S4). This degeneracy will be split by
the SOC since in this case the spin is coupled to the lattice such
that a pure spin rotation is not allowed.

The magneto-optical effects in 3D fcc nc-AFMs have a
topological origin, in analogy to the topological Hall effect, since
they are rooted in scalar spin chirality rather than SOC. More
importantly, the BES is not a necessary condition for the
emergence of magneto-optical effect, in contrast to the usual
wisdom. The TMO effects we discovered here, requiring neither
SOC nor BES, differ fundamentally from the conventional
magneto-optical effects which have been intensively studied
before. Therefore, the TMO effects have to be classified into the
category of topological light–matter interactions.

QTMO effects. After uncovering the novel topological
light–matter interactions in chiral AFMs, we now elucidate the
intriguing cases in which the resulting TMO phenomena take
quantized values. In particular, we will demonstrate that the
characteristic Kerr and Faraday rotation angles amount to values
that depend not on details of the electronic structure but rather
on global nontrivial properties of the antiferromagnetic system.
As an example, we consider a 2D nc-AFM with a triangular lattice
and chiral 3Q spin structure as shown in Fig. 1c. By parallel
transporting the four spins to have a common origin, we realize
that they span a solid angle of 4π (Fig. 1d). It becomes intuitively
clear that the nontrivial spin texture can in principle give rise to
quantized Hall transport25. The band structure and the anom-
alous Hall conductivity of the 2D triangular lattice are illustrated
in Fig. 2d. As compared to the 3D fcc lattice, while the spin
degeneracy of the bands remains, local band gaps occur between
each pair of degenerate bands characterized by the Chern number
C ¼ ± 1 and a quantized anomalous Hall conductivity
σxy ¼ Ce2=h. The global band gap at 1/4 filling is closed when
J=t < 0:7, while the one at 3/4 filling survives for arbitrarily small
J=t and hence holds a spontaneous quantum Hall effect26,27. This
intriguing quantum state, originating from the spin chirality
instead of the SOC, is called quantum topological Hall (QTH)
insulator28. While the dc Hall conductivity due to spin chirality
has been studied for the 2D triangular lattice before26,27, here, we
aim for its generalization in terms of a charge response to optical
fields with finite frequency ω, which has been overlooked so far.
Since the magnetic point group of the 2D triangular lattice is
�31m0, nonzero σxyðωÞ is indeed symmetry-allowed (Fig. 2e). This
implies that the TMO effects mediated solely by the complex spin
topology can exist in a QTH insulator.

Even more remarkably, the TMO effects emerging in the QTH
insulators should be quantized in the low-frequency limit. The
underlying physics is that for the QTH insulator, in analogy to the
Chern insulator, the Maxwell’s equations are modified by adding the
magnetoelectric (axion) term Θα

4π2 E � B into the usual Lagrangian29.
The magnetoelectric polarizability (axion angle) Θ is quantized
modulo 2π and in particular, Θ ¼ π and Θ ¼ 0 classify
topologically nontrivial and trivial insulators, respectively. By
combining the modified Maxwell’s equations and the free-standing
slab geometry, one finds that in the low-frequency limit (_ω � Eg,
where Eg is the topologically nontrivial band gap) the Kerr and
Faraday rotation angles in QTH insulators can be written as30–32

θK ¼ �tan�1 c=ð2πσRxyÞ
h i

; ð3Þ

θF ¼ tan�1ð2πσRxy=cÞ; ð4Þ
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where c is the velocity of light in vacuum and σRxy is the real part
of magneto-optical conductivity. Figure 2f clearly shows that
σRxyðω ! 0Þ ¼ Ce2=h (C ¼ 1 for the 2D triangular lattice)—thus,
the quantized Kerr and Faraday angles occur inevitably with
θK ¼ �tan�1½1=ðCαÞ� ’ �π=2 and θF ¼ tan�1ðCαÞ ’ Cα,
where α ¼ e2=ð_cÞ ’ 1=137 is the fine structure constant.
Recently, such kinds of quantized magneto-optical and
magnetoelectric effects have been experimentally observed in
various Chern insulator thin films33–37.

Realizing TMO and QTMO effects. Armed with the above
insights from the model analysis, we now consider real materials
by taking γ-FexMn1−x and KxRhO2 as prototypes that exhibit the
TMO and the QTMO effects, respectively.

Disordered γ-FexMn1−x alloys exhibit the multi-Q spin texture
in an fcc lattice, as evidenced by neutron diffraction
measurements38,39. The 1Q (Fig. 3a) and 2Q (Fig. 3c) states are
collinear AFMs which appear in the concentration range of
x < 0:4 or x > 0:8, while the 3Q state (Fig. 3b) as a noncollinear
AFM exists when 0:4< x < 0:8. We first examine the electronic
and magneto-optical properties in 3Q spin texture (e.g.,
γ-Fe0.5Mn0.5). Under strain along the [111] direction, the band

structure without SOC remains doubly degenerate (see Supple-
mentary Fig. 1), while the magneto-optical conductivity σxyðωÞ
turns out to be nonzero (see Supplementary Fig. 2). As a
consequence, the Kerr and Faraday rotation angles, depicted in
Fig. 3d, e, clearly depend on the strain. Their values are not
changed after the SOC is switched on (see Supplementary Fig. 3,
taking δ ¼ 0:95 as an example). This signifies the emergence of
the TMO effects rooting entirely in the spin chirality, similarly to
the topological orbital magnetization and topological Hall effect
occurred in γ-FexMn1−x

40,41. The discovery here differs from the
case of the pyrochlore ferromagnet Nd2Mo2O7

42, in which both
the spin chirality and the SOC contribute to the Kerr effect. The
magneto-optical strength (MOS) for the Kerr and Faraday effects,
defined by MOSK;F ¼

Rþ
0

1
_jθK;FðωÞjdω, can be used to analyze

the whole trend of magneto-optical effects. Figure 3f illustrates
the dependence of topological Kerr and Faraday effects on the
strain. The linear relation can be established if the strain is
sufficiently small.

TMO effects depend strongly on the spin texture and can be
readily observed in experiments. The Kerr and Faraday angles are
vanishing in 1Q (θ ¼ 0�) and 2Q (θ ¼ 90�) spin textures (Fig. 3g,
h). If rotating the spins to form a nc-AFM (0�< θ < 90�), the
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nonzero spin chirality will arise, which in turn leads to nonzero
Kerr and Faraday angles. Figure 3i shows that TMO effects are
proportional to the scalar spin chirality and in particular, the Kerr
and Faraday angles reach their maxima for 3Q spin texture
(θ ¼ 54:7�). Since the γ-FexMn1−x thin film has been recently
grown on the Cu/Al2O3 substrate along the (111) crystallographic
direction and the lattice strain naturally occurs as compared to
the bulk phase41, we proclaim that TMO effects can be
experimentally observed by varying the alloy concentration in
γ-FexMn1−x thin film. The expected evidence is that the magneto-
optical signals are suppressed in low and high concentrations, but
will be activated for medium concentration since the spin
chirality starts to play its role.

Next, we turn to another nc-AFM KxRhO2. It crystallizes in the
γ-NaxCoO2-type structure where two RhO2 monolayers (MLs) and
two K ions layers stack alternately along the crystallographic z
axis43–45. The RhO2 ML is a 2D nc-AFM in the sense that the Rh
atoms are arranged on a triangular lattice with the 3Q spin
structure (Fig. 4c). When x ¼ 0:5, an insulating gap emerges
because the a1g orbitals of the Rh3.5+ (4d5:5) ions have a filling
factor of 3/4 under the trigonal deformation of RhO2 octahedron.
K0.5RhO2 was predicted to be a QTH insulator with the Chern
number C ¼ 2 because two RhO2 MLs have identical spin
structures (Fig. 4a, refer to the AA stacking) and each of them
contributes C ¼ 128. When inverting all spins in one RhO2 ML,
the Chern number will flip its sign (i.e., C ¼ �1). Hence, K0.5RhO2

having opposite spins in two RhO2 MLs (Fig. 4b, refer to the AA′
stacking) is a normal insulator with C ¼ 0 (Supplementary Fig. 4).

In the absence of SOC, the bands are always doubly spin
degenerate (Supplementary Figs. 4 and 5), however, the QTMO

effects can emerge in AA-stacked K0.5RhO2 and RhO2 ML. Before
assessing the magneto-optical effects, we need to calculate the
optical conductivity. In Fig. 4e, σRxy displays a quantized behavior
in the low-frequency limit, while σRxx (Fig. 4d) as well as the
corresponding imaginary parts σIxx (Fig. 4f) and σIxy (Fig. 4g) tend
to be zero when ω ! 0. By plugging the optical conductivity into
Eqs. (8), (9) and (12)–(15), we confirm the existence of QTMO
effects, that is, θK ’ �π=2 and θF ’ Cα in the low-frequency
limit, as shown in Figs. 4h, i. To measure the quantized magneto-
optical effects, the frequency of incident light should be much
smaller than the topologically nontrivial band gap Eg

31,46. The
QTMO effects proposed in the RhO2 ML could be experimentally
observed if the frequency is below 3 THz (’13 meV). The
powerful tool of time-domain THz spectroscopy is ready for
exploring such kinds of quantized magneto-optical effects33–37.
Thus, the quantized Kerr rotation angle should be measurable
over a whole range of finite frequencies that extend up to the size
of the nontrivial band gap (Fig. 4h).

Spectroscopic fingerprints of TMO effects. Unlike the topolo-
gical Hall effect, the TMO effect accommodates additional
information as it is a frequency-dependent quantity. Thus, the
fundamental question arises whether there are characteristic
features in the MO spectra that can distinguish the TMO effect
from its trivial cousin. Inspired by the MOS (Fig. 3i), we discover
that the integrals of σRxyðωÞ, θKðωÞ, and θFðωÞ are all proportional
to the spin chirality χijkðθÞ. As a consequence, for the TMO effect,
we propose the following three MO spectral integrals (SIs) to
identify the signatures of the complex spin topology in the
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underlying spectra:

SIð1Þ ¼
Z 1

0þ
σRxyðωÞdω ’ KRχijkðθÞ; ð5Þ

SIð2Þ ¼
Z 1

0þ
θKðωÞdω ’ KKχijkðθÞ; ð6Þ

SIð3Þ ¼
Z 1

0þ
θFðωÞdω ’ KFχijkðθÞ; ð7Þ

where KR, KK, and KF are scaling constants. Considering as an
example the strained γ-Fe0.5Mn0.5 system, we demonstrate in
Fig. 5a that the spectral integral SIð1Þ changes drastically with the
magnetic order and the underlying spin topology. While this
spectral integral follows the finite scalar spin chirality in the non-
coplanar antiferromagnetic state, i.e., SIð1Þ / χijkðθÞ / cos θsin2θ,
its value relates instead to the magnetocrystalline anisotropy in the
collinear ferromagnetic state. Specifically, the anisotropy function
K0 þ K1sin

2ðϕÞ þ K2sin
4ðϕÞ47 with ϕ ¼ θ � 54:7� describes

excellently the conventional MO spectrum of the hexagonal
ferromagnet48,49, which exhibits no spin chirality. As they directly
relate to the MO conductivity, the SIs SIð2Þ and SIð3Þ for the Kerr
and Faraday rotation angles reveal analogously in Fig. 5b, c fun-
damentally distinct behaviors for collinear and noncoplanar mag-
netic orders. Therefore, we proclaim that the different physical
nature of the topological and conventional MO effects manifests in
specific hallmarks in terms of the proposed SIs, which can thus be
used to distinguish the two phenomena. Finally, while Fig. 5

promotes tuning the magnetic order to identify the spectroscopic
fingerprints, we emphasize that applying strain is another suitable
means. If we apply tensile or compressive strain, the TMO effect
and the SIs change their signs in the noncoplanar antiferromagnet,
which is in sharp contrast to the situation for the ferromagnetic
state, where a sign change is purely accidental.

Discussion
We discovered a fundamentally new type of light–matter inter-
action that originates from the chirality of the underlying com-
plex spin texture of antiferromagnetic systems. As compared to
the century-old microscopic interpretation based on the interplay
of SOC and BES11–18, the predicted TMO and QTMO effects
mark a new class of solid-state phenomena that root in the
concurrence of symmetry, chirality, and topology in magnetic
materials. Thereby, we generalized the dc charge response26,27

driven by noncoplanar magnetic order to the realm of nonzero
frequency, which was unexplored so far. Specifically, we predicted
the emergence of quantum topological Kerr effect with a quan-
tized rotation angle of nearly 90�. The direct fingerprint of the
complex spin texture of chiral magnets on the coupling to
polarized light is thus significantly larger than in ferromagnetic
materials, even though there might be no net spontaneous
magnetization. Consequently, the proposed TMO and QTMO
effects could be used to reveal domains of different chirality in
general nc-AFMs. Although the topological light–matter inter-
actions that we uncovered originate from fundamentally distinct
physics, their manifestations in terms of changes of the

K

O

Rh

Side view

Top view

Bulk AA stacking Bulk AA′ stacking RhO2 monolayer

2

3 4

1

11

1

2

4

a

d

e

f

cb

g

h

i

16
4

0

–4

–8

12

8

4

0
0

α

2α

4α

–1

< 13 meV

AA
AA′
ML

AA
AA′
ML

< 3 THz

0

� K
 (r

ad
)

� F
 (r

ad
)

–π/2

8

0
8

4

2

0

–4
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.30.4 0.4 0.0 0.1 0.13 0.22

C = 2

C = 1
C = 0

σR xx
 (e

2 /h
)

σI xx
 (e

2 /h
)

σI xy
 (e

2 /h
)

σR xy
 (e

2 /h
)

hω (eV) hω (eV) hω (eV)

Fig. 4 Quantum topological magneto-optical effect in K0.5RhO2. a, b Bulk AA and AA′ stackings of K0.5RhO2. c Side and top views of RhO2 monolayer
(ML). d–g The optical conductivities of K0.5RhO2 and RhO2 ML. The results of K0.5RhO2 are scaled by the length of crystallographic z axis. For RhO2 ML,
the Fermi energy is moved upward to the topologically nontrivial band gap Eg (see Supplementary Fig. 5). h, i The Kerr and Faraday rotation angles of
K0.5RhO2 and RhO2 ML. The dash-dotted vertical lines indicate the Eg of the AA-stacked K0.5RhO2 (0.22 eV) and RhO2 ML (0.13 eV). The shaded area
marks the low-frequency limit (e.g., _ω<0:1EML

g ’ 13 meV), in which the quantum topological magneto-optical effects can be measured by THz
spectroscopy. Spin–orbit coupling is not included in d–i.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13968-8

6 NATURE COMMUNICATIONS |          (2020) 11:118 | https://doi.org/10.1038/s41467-019-13968-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


polarization in reflected and transmitted light can be measured
similarly to their conventional analogs by readily available
experimental techniques.

While we assumed a polar geometry at normal incidence to
predict novel types of chirality-driven magneto-optical effects, our
conclusions are universal as they hold also for different mea-
surement geometries. For example, in the case of γ-FexMn1−x, the
incident light propagates along the [111] direction parallel to the
direction of the fictitious magnetic field due to finite scalar spin
chirality. If the incident light deviates slightly from this direction,
the Kerr angle acquires an additional geometrical factor of
cosðϕiÞ=cosðϕi ±ϕrÞ50 that depends on the light’s polarization ± ,
and includes the angles of incidence ϕi and reflectance ϕr. Simi-
larly, the Faraday angle at oblique incidence is approximately
equal to the original one at normal incidence. The predicted

topological light–matter interactions are also active in both
longitudinal and transversal geometries, for which the plane of
incidence are the zx and xy planes (see Fig. 1), since they are also
directly related to nonvanishing magneto-optical conductivity
σxyðωÞ. In the case of the quantized TMO phenomena in KxRhO2,
we studied explicitly the normal incidence of light that propagates
along the [0001] direction. Since the long-wavelength and low-
energy (λ � l and _ω � Eg) predictions are independent of the
angle of incidence46, the quantization of the Kerr and Faraday
rotation angles will be robust even under oblique incidence.

In this work, we explored the microscopic origin of TMO Kerr
and Faraday phenomena, which are linear in the electric field, as
representative light–matter interactions in chiral magnets. We
anticipate that the scalar spin chirality imprints analogously on
higher-order magneto-optical effects, including nonlinear Kerr
(second-order in electric field) and Voigt phenomena (second-
order in fictitious magnetic field B), and magnetic dichroism for
both linearly and circularly X-ray polarized light (XMLD and
XMCD). Our work advances the understanding and potential use
of light–matter interactions in chiral magnets. Specifically, the
discovered quantized versions of topological Kerr and Faraday
effects are intimately linked to the quantized magneto-electric
response of topological magnetic systems, realizing exotic axion
electrodynamics29,51. Therefore, we promote the QTMO phe-
nomena as an exciting platform to reveal and manipulate axion
physics by coupling polarized light to the noncoplanar spin
structure in antiferromagnetic materials. Ultimately, by exploring
the coupling of polarized light to the spin pattern of anti-
ferromagnetic materials, we also establish texture-driven mag-
neto-optical effects as key physical phenomena in the emerging
field of topological antiferromagnetic spintronics52.

Methods
Expressions for TMO and QTMO effects. The magneto-optical Kerr and Faraday
effects measure the different response to left-circularly and right-circularly polar-
ized light that propagates through a magnetic medium. Owing to this, the Kerr and
Faraday angles are universally defined as:

θK ¼ 1
2

arg fEr
þg � arg fEr�g

� �
; ð8Þ

θF ¼ 1
2

arg fEtþg � arg fEt
�g

� �
; ð9Þ

where Er;t
± ¼ Er;t

x ± iEr;t
y are the left-circularly (�) and right-circularly (þ) polarized

components of the reflected (r) and transmitted (t) electric fields. Two distinct
scenarios have to be considered separately. Case (1): In topologically trivial
materials (e.g., γ-FexMn1−x), by solving the conventional Maxwell’s equations with
appropriate boundary conditions, the complex Kerr angle in the polar geometry at
normal incidence is given by11–14

θK þ iϵK ¼ �σxy

σxx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ið4π=ωÞσxx

p ; ð10Þ

where θK and ϵK are the Kerr rotation angle and ellipticity, respectively. Similarly,
the complex Faraday angle in the polar geometry at normal incidence reads11–14

θF þ iϵF ¼
ωl
2c

ðnþ � n�Þ; ð11Þ

where l is the thickness of the thin film, c is the speed of light in vacuum, and

n ± ¼ ½1þ 4πi
ω ðσxx ± iσxyÞ�1=2 are the complex refractive indices. Case (2): In the

QTH insulators (e.g., K0.5RhO2), the Maxwell’s equations have to be modified by
the additional magnetoelectric term E � B29. For a QTH insulator film with a
thickness much shorter than the incoming light wavelength, the outgoing electric
fields are derived as31,46

Er
x ¼ 1� ð1þ 4πσxxÞ2 � ð4πσxyÞ2

h i
A; ð12Þ

Er
y ¼ 8πσxyA; ð13Þ

Et
x ¼ 4ð1þ 2πσxxÞA; ð14Þ

Et
y ¼ Er

y ; ð15Þ
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Fig. 5 Spectroscopic hallmarks of the topological magneto-optical effect.
For the strained γ-Fe0.5Mn0.5 system with δ ¼ 0:95, the magnetic order as
encoded in θ imprints on the spectral integrals of a the real part of the off-
diagonal magneto-optical conductivity, and on the spectral integrals of b
Kerr and c Faraday rotation angles. Solid circles and open squares represent
the data for the chiral noncoplanar antiferromagnet and for the collinear
ferromagnetic state, respectively. In the latter case, the magnetization
changes with θ from the [001] to the [110] crystallographic direction.
Spin–orbit coupling is included in the ferromagnetic case, for which the
resulting integrals are divided by an overall factor of 10. The solid lines are
fits of the obtained angular dependence to the scalar spin chirality, whereas
the dashed lines are computed based on the magnetocrystalline anisotropy
function with hexagonal symmetry, K0 þ K1sin

2ðϕÞ þ K2sin
4ðϕÞ where

ϕ ¼ θ � 54:7�, as the strain is applied along the [111] direction of cubic
lattice.
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with A ¼ 1= ð2þ 4πσxxÞ2 þ ð4πσxyÞ2
h i

. Plugging Eqs. (12)–(15) into Eqs. (8) and

(9), we obtain the quantized Kerr and Faraday angles in the low-frequency limit
(ω ! 0), which can be simply expressed by Eqs. (3) and (4).

Tight-binding calculations. The Kondo lattice model expressed in Eq. (1) is
applicable for both the 3D fcc lattice and 2D triangular lattices. For the 3D fcc
lattice, the strain is defined by δ ¼ d0=d, where d0 and d refer to the distance
between adjacent (111) planes in the strained and unstrained lattices, respectively.
The transfer integral within (between) the (111) planes is given by tij ¼ t ðt0Þ,
where t0 ¼ t=δ2 is scaled with the strain (t0 ¼ t implies no strain). An 8 × 8 matrix
representation of the Hamiltonian was constructed by introducing eight ortho-
normal basis states iαj i (i ¼ f1; 2; 3; 4g, α ¼ f"; #g) that describes the interaction
of itinerant electrons with the local spin moment Si. Using Fourier transforma-
tions, we transformed this matrix to a representation HðkÞ in momentum space,
which was subsequently diagonalized at every k-point to access the band structure
and magneto-optical conductivity.

First-principles calculations. The computational parameters of electronic struc-
ture: (1) γ-FexMn1�x . The self-consistent calculations were performed within the
full-potential linearized augmented-plane-wave code FLEUR (see www.flapw.de).
Exchange and correlation effects were treated in the generalized gradient
approximation of the Perdew–Burke–Ernzerhof (GGA-PBE) functional53. The
virtual crystal approximation was used to describe the disordered alloys by
adapting the nuclear numbers under conservation of charge neutrality. The lattice
constant of fcc γ-FexMn1−x was chosen as 3.63Å40. A compressive or tensile strain,
δ ¼ d0=d, was applied along the [111] direction, where d0 and d refer to the
distance between adjacent (111) planes in the strained and unstrained lattices. The
Poisson effect was accounted by the constant volume approximation. (2) K0.5RhO2.
The self-consistent calculations were performed by the projector-augmented wave
code VASP54. The GGA-PBE functional was used to treat exchange and correlation
effects53. The GGA+U scheme with the effective Coulomb energy
Ueff ¼ U � J ¼ 2:0 eV was applied for Rh 4d orbital to account for its Coulomb
correlation effect28. The experimental lattice constants (a ¼ 3:065Å and
c ¼ 13:600Å)55 were used. A slab model with a vacuum region more than 15Å
was used for RhO2 monolayer.

Using the WANNIER90 package56, maximally localized Wannier functions were
constructed based on the converged electronic structure in order to evaluate the optical
conductivity tensor on an ultra-dense mesh of k-points. For metallic γ-FexMn1−x, the
intraband contribution was considered by adding the phenomenological Drude
term12, σD ¼ σ0=ð1� iωτDÞ, into the diagonal element of optical conductivity. The
Drude parameters (σ0 and τD) were obtained by linearly interpolating the
experimental data of pure Fe (σ0 ¼ 6:40 ´ 1015 s−1 and τD ¼ 9:12 ´ 10�15 s)57 and
pure Mn (σ0 ¼ 4:00 ´ 1015 s−1 and τD ¼ 0:33 ´ 10�15 s)58.

Data availability
The tight-binding code and the data that support the findings of this study are available
from the corresponding authors on reasonable request.
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Supplementary Figures 

 
Supplementary Figure 1. Band structures of 𝛾-Fe0.5Mn0.5. a Band structures of 𝛾-
Fe0.5Mn0.5 without and with spin-orbit coupling under the strain 𝛿 =0.95. b The 
enlarged band structures within the energy range of [-1.5~1.5] eV. The bands are 
twofold spin degenerate unless the spin-orbit coupling is switched on. 
 

 
Supplementary Figure 2. The optical conductivities of 𝛾 -Fe0.5Mn0.5 under various 
strains. a,b The diagonal elements have similar profiles regardless of strains. The Drude 
term has been added to the diagonal elements. c,d The off-diagonal elements (i.e., the 
magneto-optical conductivity) arise only after the strains are applied. In particular, the 
magneto-optical conductivity can be effectively tuned by the strain, that is, the 
magnitude of 𝜎$% 𝜔  is proportional to 𝛿 − 1  and the sign of 𝜎$% 𝜔  changes 
along with sgn(𝛿 − 1). The spin-orbit coupling is not included in the calculations.  
 



 
Supplementary Figure 3. The optical conductivity and magnet-optical spectrum of 𝛾-
Fe0.5Mn0.5. The optical conductivity a-d as well as the magneto-optical Kerr e,f and 
Faraday g,h spectra without and with spin-orbit coupling. The Drude term is included 
and the strain 𝛿=0.95 is applied along the [111] direction. Spin-orbit coupling does not 
influence the magneto-optical effects in 𝛾-FexMn1-x, demonstrating the topological 
origin of magneto-optical effects. 
 

 
Supplementary Figure 4. The band structures and anomalous Hall conductivities of 
K0.5RhO2. a,b The band structures and anomalous Hall conductivities of the AA stacked 
K0.5RhO2 without and with spin-orbit coupling. c,d The same as a,b but for the AA’ 
stacked K0.5RhO2. The bands are twofold spin degenerate without spin-orbit coupling. 
The AA stacked K0.5RhO2 is a quantum topological Hall insulator with the Chern 
number C=2. On the other hand, the AA' stacked K0.5RhO2 is a normal insulator with 
the Chern number C=0. The anomalous Hall conductivities of K0.5RhO2 are scaled by 
the length of the crystallographic z axis such that the unit is e2/h in accord with that of 
two-dimensional systems. 
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Supplementary Figure 5. The band structures and anomalous Hall conductivities of 
RhO2 monolayer. a The band structures and anomalous Hall conductivities of RhO2 
monolayer without spin-orbit coupling. b The same as a but with spin-orbit coupling.  
The bands are twofold spin degenerate without spin-orbit coupling. RhO2 monolayer is 
metallic intrinsically. However, it turns out to be a quantum topological Hall insulator 
with the Chern number C=1, if the Fermi energy is moved into the band gap above, e.g., 
by electron doping. 
 
 

Supplementary Tables 

 
AH family 

(driven by an electric field) 
MO family 

(driven by an optical field) 

Spin-orbit coupling  
+ band spin splitting 

AH effecta MO effecte 

QAH effectb QMO effectf 

Scalar spin chirality 
TH effectc TMO effect* 

QTH effectd QTMO effect* 
Supplementary Table 1. The family members of the anomalous Hall (AH) and magneto-
optical (MO) effects as well as their distinctly different origins. QAH: quantum 
anomalous Hall; QMO: quantum magneto-optical; TH: topological Hall; TMO: 
topological magnet-optical; QTH: quantum topological Hall; QTMO: quantum 
topological magneto-optical. 
 

a Supplementary Reference 1 and references therein; 
b Supplementary Reference 2 and references therein; 
c Supplementary References 3 and 4 and references therein;  
d Supplementary Reference 5 and references therein; 
e Supplementary References 6-9 and references therein; 
f Supplementary References 10-12 (Theory) and 13-17 (Experiment); 
*The present work. 
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