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Higher-order topology yields intriguing multidimensional topological phenomena, while Weyl semi-
metals have unconventional properties such as chiral anomaly. However, so far, Weyl physics remain
disconnected with higher-order topology. Here, we report the theoretical discovery of higher-order Weyl
semimetals and thereby the establishment of such an important connection. We demonstrate that higher-
order Weyl semimetals can emerge in chiral materials such as chiral tetragonal crystals as the intermediate
phase between the conventional Weyl semimetal and 3D higher-order topological phases. Higher-order
Weyl semimetals manifest themselves uniquely by exhibiting concurrent chiral Fermi-arc surface states,
topological hinge states, and the momentum-dependent fractional hinge charge, revealing a novel class of
higher-order topological phases.
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Introduction.—Topological insulators and semimetals
with bulk-edge correspondence have invoked paradigm
shifts in the study of condensed matter physics [1,2],
photonics [3], acoustics [4,5], and phononics [6]. Recent
discovery of higher-order topological insulators (HOTIs)
[7–36], which exhibit gapped edge states and topologically
protected corner and hinge states, unveils a new horizon
beyond the conventional bulk-edge correspondence. The
underlying bulk-edge-corner or bulk-surface-hinge corre-
spondence manifests concurrent multidimensional topo-
logical physics, which is the most salient feature of higher-
order topology. On the other hand, Weyl semimetals have
been one of the focuses in the study of topological physics
and materials, due to their anomalous physical properties
(e.g., chiral anomaly) and their connection with various
topological phases [e.g., three-dimensional (3D) quantum
Hall effects] [37–47]. Although higher-order Dirac semi-
metals [48–51] have been proposed, Weyl semimetals,
however, remain disconnected with higher-order topology.
In this Letter, we establish such a missing connection.

The basic picture is illustrated in Fig. 1. If a 3D system is
regarded as kz-dependent two-dimensional (2D) systems,
conventional Weyl points separate the 3D Brillouin zone
into regions with quantum anomalous Hall insulator
(QAHI) and normal insulator (NI) phases [Fig. 1(a)]
[38,40,44,45]. In contrast, higher-order Weyl points
(HOWPs) separate the 3D Brillouin zone into regions with
QAHI and HOTI phases [Fig. 1(b)]. As a consequence,
when measuring the hinge local density of states (LDOS),
conventional Weyl semimetals exhibit only spectral fea-
tures of topological surface states [Fig. 1(c)] [38,41,42,

44–46]. In comparison, the higher-order Weyl semimetals
exhibit both spectral features of the surface states and the
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FIG. 1. Schematic of (a) conventional and (b) higher-order
Weyl semimetals. Weyl points and their topological charges are
depicted in the middle. Hinge LDOS for (c) conventional and
(d) higher-order Weyl semimetals. Higher-order Weyl semimetal
exhibits concurrent hinge and surface states and fractional hinge
charges (see insets) in finite systems. Finite structures with
20 × 20 unit cells in the x-y plane are adopted in the calculation
using models in Fig. 2.
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higher-order hinge states [Fig. 1(d)]. In addition, due to the
higher-order topology, fractional charge can emerge on the
hinges of higher-order Weyl semimetals. The concurrent
chiral Fermi-arc surface states, topological hinge states, and
the momentum-dependent fractional hinge charge emerge
as the hallmark characteristics of higher-order Weyl semi-
metals. In comparison, higher-order Dirac semimetals have
only topological hinge properties, since the higher-order
Dirac points separate in k-space higher-order topological
band gaps and trivial band gaps.
Model for the HOWPs.—To realize the HOWPs depicted

in Fig. 1, we first notice that both QAHIs and quadrupole
topological insulators (QTIs) can be realized using
synthetic gauge fluxes [13,18,38,40,52]. QAHI is a
“first-order” 2D topological insulator with quantized
Hall conductance and chiral edge states [52]. In compari-
son, QTI is a “second-order” 2D topological insulator that
hosts gapped edge states, topological corner states, and
fractional corner charge �1=2 with a quadrupole configu-
ration [7,8]. We propose a tight-binding model with square-
spiral structures, where translation along the z direction
generates synthetic fluxes straightforwardly.
The tight-binding model based on tetragonal lattices is

depicted in Fig. 2(a). For simplicity, the lattice constants
along the x, y, z directions are set to unity. In each unit cell,
there are four identical sites (indicated by the black spheres)
arranged in the geometry as illustrated in Fig. 2. The
structure exhibits square spirals as going from 1 →
3 → 2 → 4, yielding a fourfold screw symmetry
S4z ≔ ðx; y; zÞ → ðy;−x; zþ 1

4
Þ. In addition, there are two-

fold rotation symmetries C2x ≔ ðx; y; zÞ → ðx;−y;−zÞ and
C2y ≔ ðx; y; zÞ → ð−x; y;−z − 1

2
Þ, which, together with the

time-reversal symmetry, protect the quadrupole topology.
The tight-binding Hamiltonian is given by

H ¼
X

hi;ji
tNNðc†i aj þ d†i bj þ c†i bj þ a†i djÞ

þ
X

hhi;jii
tNNNða†i bj þ c†i djÞ þ H:c:; ð1Þ

where aða†Þ; bðb†Þ; cðc†Þ, and dðd†Þ are the annihilation
(creation) operators on the sites 1–4, separately. At the right
side of the equation, the first term describes the nearest-
neighbor couplings, where tNN ¼ γ (λ) for the intracell
(intercell) coupling. The second term denotes the next-
nearest-neighbor couplings, where tNNN ¼ t1 (t2) for the
intracell (intercell) coupling. Their values are specified in
the figure captions.
A top-down view is shown in Fig. 2(b), where the spiral

directions are labeled by the arrows for different regions.
The spiral structures introduce synthetic gauge fluxes �ϕ
into these regions. Remarkably, such synthetic gauge fluxes
are merely due to the translation along the z direction,
which can be understood as follows: The site 4 in a unit cell

of central coordinate ðX; Y; ZÞ couples only to the site 1 in
the upper unit cell of central coordinate ðX; Y; Z þ 1Þ. Such
a coupling naturally picks up a translational phase ϕ ¼ kz.
We remark that our model, with time-reversal symmetry
and using only positive couplings, is more feasible than
other models for quadrupole topology, where either a
mixture of positive and negative couplings or magnetic
fluxes are required [7,17,48].
The synthetic gauge fluxes are crucial in our construc-

tion. First, they give rise to the emergence of the QAHIs
with Chern number C ¼ 1 (−1) for 0 < kz < kWP
(−kWP < kz < 0). Second, they yield the QTI phase with
a quadrupole index qxy ¼ 1

2
for jkzj > kWP (see

Supplemental Material for the characterizations of these
two topological phases [53]). Here, the HOWPs appear at
the wave vectors ðπ; π;�kWPÞ with a topological charge of
−1. According to the Nielsen-Ninomiya theorem [61], to
compensate the nonzero total charge of these HOWPs [61],
a quadratic Weyl point with charge þ2 appears at the Γ
point. If the 3D system is viewed as kz-dependent 2D
systems, the HOWPs can then be regarded as the transitions
between the QAHIs and QTIs.
The Chern number and the quadrupole index can be

determined through two approaches. First, straightforward
calculations based on the Wilson-loop and nested Wilson-
loop approaches confirm the above picture (see
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FIG. 2. (a) 3D tight-binding model with chiral couplings in
tetragonal lattices. (b) Top-down view of the model. Brown
arrows represent the spiral hopping structures that induce the
synthetic gauge fluxes�ϕ. (c) Evolution of energy bands and C̃4z
eigenvalues along the A −M − A line. The gap between the
second and third bands experiences topological transitions from
QTI to QAHI via the HOWPs. (d) Evolution of Chern number C
(upper) and quadrupole index qxy (lower) with kz for the gap
between the second and third bands. Parameters for higher-order
Weyl phase: γ ¼ 0.6, λ ¼ 1, t1 ¼ 0.2, and t2 ¼ 0.24. The conven-
tional Weyl phase in Fig. 1 is realized by the following
exchanges: λ ↔ γ, t1 ↔ t2.
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Supplemental Material for details [53]). The eigenvalues of
the (nested) Wilson-loop operator gives the (nested)
Wannier bands. The region with jkzj < jkWPj exhibits
gapless Wannier bands, of which the winding property
gives the Chern numbers shown in Fig. 2(d). The change of
the Chern number C at kz ¼ 0 is due to the quadratic Weyl
point at the Γ point, while the change at kz ¼ �kWP is due
to the HOWPs. In comparison, the region with jkzj > jkWPj
exhibits gapped Wannier bands. The nested Wannier bands
yield quantized Wannier band polarizations and nontrivial
quadrupole index qxy ¼ 1

2
(see Supplemental Material for

details [53]). The quantization of the Wannier band polar-
izations and the quadrupole index to zero or 1

2
are dictated

by the symmetry operators Θx ¼ C2xT and Θy ¼ C2yT ,
where T is the time-reversal operator (see proof in the
Supplemental Material [53]). The noncommutativeness of
theΘx andΘy operators are crucial for the emergence of the
gapped Wannier bands [8]. Though the synthetic flux
model is quite different from the original model for
quadrupole topological insulators proposed in Ref. [7], it
does support a quadrupole topological band gap with
different protective symmetries, as validated in details in
the Supplemental Material [53].
On the other hand, the quadrupole index can be extracted

from the rotation eigenvalues at the high-symmetry points
[8,20]. Specifically, for each kz, we examine the eigenval-
ues of the pseudorotation operator C̃4z ¼ e−ikz=4S4z at the
Γ̃ ¼ ð0; 0; kzÞ and M̃ ¼ ðπ; π; kzÞ points. The first band
always has C̃4zðΓ̃Þ ¼ 1, while the second band has
C̃4zðΓ̃Þ ¼ i (−i) for kz > 0 (kz < 0). In comparison, the
rotation eigenvalues at the M̃ point vary with kz, as
presented in Fig. 2(c). The quadrupole index is related
to the rotation eigenvalues as [8,20]

exp ði2πqxyÞ ¼ r−4 ðΓ̃Þr−4 ðM̃Þ�: ð2Þ

Here, r−4 denotes the C̃4z eigenvalues of �i. From the C̃4z
eigenvalues in Fig. 2(c), one obtains quadrupole topologi-
cal numbers consistent with those in Fig. 2(d). The band
inversion between the second and third bands along the
A-M-A line triggers the transition between the QAHI
phases and the QTI phase, and thus leads to the formation
of the HOWPs.
Topological surface states.—The coexistence of the

conventional and higher-order topology is manifested in
the topological surface states. Depending on the wave
vector kz, the topological surface states can be gapless or
gapped. As shown in Fig. 3(a), the surface states are gapless
along the Γ̄ Ȳ line, while the surface states become gapped
along the R̄ Z̄ line. The former originates from the gapless
chiral edge states in the QAHI phases, while the latter
results from the gapped edge states in the QTI phase.
We further study the topological surface states by

examining the surface LDOS at given energies. We sample

three different energies: E1 is exactly at the energy of the
quadratic Weyl points, E2 is exactly at the energy of the
HOWPs, and E3 is an energy above. At E1 and E2, there are
Fermi-arc surface states connecting the projection of the
quadratic Weyl point at Γ̄ and the projections of the
HOWPs at the surface Brillouin zone boundary. These
chiral Fermi arcs connecting projections of Weyl points
with opposite charges are consistent with the conventional
picture [42]. Nevertheless, the isoenergy curves form
noncontractible loops winding around the torus of the
surface Brillouin zone, which is different from the short
Fermi arcs observed in many electronic systems [47]. In
comparison, at E3, the contractible surface states emerging
at large jkzj, which do not connect Weyl points with
opposite topological charges, originate from the gapped
surface states due to the quadrupole topology.
Topological hinge states and fractional hinge charge.—

We now turn to the manifestation of the higher-order
topology at the hinges. First, taking kz ¼ π as an example
to illustrate the underlying physics, the bulk and surface
spectra are depicted in Fig. 4(a), which shows clearly the
gapped surface states within the bulk band gap. For a finite
system with four hinges, the eigenspectrum exhibits four
hinge states within the surface band gap whose wave
functions are localized around the four hinges. The con-
current bulk, surface, and hinge states appearing for jkzj >
kWP [as shown in Fig. 1(d)] demonstrate straightforwardly
the higher-order topology.
One of the remarkable properties of the QTI is the

fractional corner charge [7,62]�1=2, with a quadrupole con-
figuration as depicted in the inset of Fig. 4(c). We calculate
the hinge charge at half-filling through Qh ¼

P
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FIG. 3. (a) Bulk and (100) surface Brillouin zones. (b) Surface
LDOS for the (100) surface along high-symmetry lines. (c)–(e)
Surface LDOS at three different energies labeled in (b) as dashed
lines. E1 ¼ −0.85 (E2 ¼ −0.27) is at the energy of the quadratic
Weyl points (the HOWPs), while E3 ¼ 0.6. Parameters are the
same as in Fig. 2.
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where Phinge
α is the probability of finding an electron in the

hinge region for a filled state α. Using this method, we obtain
the fractional hinge chargeQh for various kz by considering a
hinge regionwith 4 × 4 unit cells in a finite system consisting
of 20 × 20 unit cells in the x − y plane (see Supplemental
Material for details [53]). It is seen from Fig. 4(c) that the
hinge charge gradually reaches the quantized fractional value
of 1=2 for jkzj > kWP. The crossover behavior around the
Weyl point is due to the finite-size effects.
Phase diagram.—Finally, we study the phase diagram

when the intracell nearest-neighbor coupling γ is varied. In
Fig. 4(d), we present the evolution of the Weyl points along
the A-M-A line with the parameter γ. It is seen that, for
γ < λ, the system is a higher-order Weyl semimetal. kWP
decreases with decreasing γ. In the regime γ < 0.12λ, we
find that kWP → 0 and the system becomes a 3D quadru-
pole topological phase. In comparison, the system is a
conventional Weyl semimetal when γ > λ. Therefore, the
higher-order Weyl semimetal phase emerges as the inter-
mediate phase between the conventional Weyl semimetal
and 3D quadrupole topological phases. On the other hand,
by regarding the 3D system as kz-dependent 2D systems,
the HOWPs serve as the boundary between the QAHI
phases and the QTI phase, whereas the conventional Weyl

points serve as the boundary between the QAHI phases and
the NI phase.
Conclusion and outlook.—In this Letter, we unveil the

concept of HOWPs as a type of Weyl points connected with
higher-order topology. When the 3D system is regarded as
kz-dependent 2D systems, HOWPs appear as the transition
points between the QAHIs and the HOTI with quadrupole
topology. Experimental signatures of the higher-order Weyl
points consist of the coexistence of Fermi-arc surface states
and the topological hinge states, as well as the kz-dependent
fractional charge at the hinges. The HOWPs can be realized
in tetragonal chiral crystals with the S4z, C2x, C2y, and T
symmetries. Potential material candidates in electronic and
acoustic systems are suggested in the Supplemental
Material [53]. We remark that, due to the richness of
HOTIs, there are many other types of HOWPs where the
HOTI phase can be realized without the quadrupole top-
ology (e.g., HOTI phases with quantized Wannier centers
[62]). The study of higher-order topological degeneracies
thus opens a frontier in topological physics.

This work is supported by the National Natural Science
Foundation of China under Grants No. 12074281 and
No. 11904060, the Jiangsu specially appointed professor
funding, and a project funded by the Priority Academic
Program Development of Jiangsu Higher Education
Institutions (PAPD).

Note added.—Recently, we noticed two preprints appeared
[63,64] in parallel with our work on higher-order Weyl
semimetals.
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