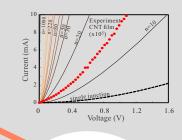

Modelling electrical conduction in nanostructure assemblies through complex networks

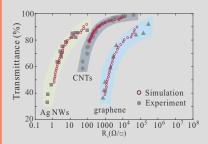
Heming Yao; Ya-Ping Hsieh; Jing Kong; Mario Hofmann *Nature Materials (2020)*


Testing simple constituents

Simulation of simple, rod-like particles shows good agreement with percolation theory

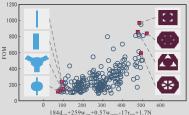
Understanding electrons

Complicated interplay of shape and properties can be considered

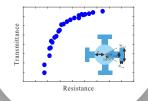


Validation

σ [A/V]

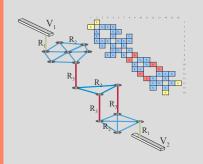

Characterizing real materials

Excellent agreement of simulation with experimental data reveals constituent properties.



Predicting new materials

Our tool helps predicting what types of nanostructures will be best for electrode applications.



Application

New theoretical tool

We applied complex network theory to investigate conduction through nanostructures of arbitrary geometry and morphology.

oncep

Introduction

Carrier transport in a wide range of nanomaterial assemblies proceeds by percolation through discrete constituents.

Improving such nanostructure assemblies is crucial for

transparent conductors, sensors, and electronic devices.

A significant obstacle to experiments is the complicated characterization and the lack of theoretical understanding.

We have developed an approach to extrapolate from simple experimental characterization results to nanostructure properties.