跳到主要內容區塊

國立臺灣大學物理學系

教師(職務別)

蔡政達


姓名   蔡政達
  Jeng-Da Chai
職稱   教授
學歷   2005年美國馬里蘭大學博士
辦公室   534
聯絡電話   02-3366-5586
電子郵件   jdchai@phys.ntu.edu.tw
個人網頁 https://web.phys.ntu.edu.tw/jdchai/

 

主要經歷
  • 國立臺灣大學物理學系 教授 (2017.8-迄今)
  • 國立臺灣大學物理學系 副教授 (2013.8-2017.7)
  • 國立臺灣大學物理學系 助理教授 (2009.8-2013.7)
  • 美國加州大學柏克萊分校及勞倫斯柏克萊國家實驗室 博士後研究員 (2006.1-2009.6)

 

國際知名計算軟體共同發展者:

  • Developer, Q-Chem Inc. (2008-迄今)


國際期刊編輯委員:

  • Editorial Board, International Journal of Quantum Chemistry (2018.3-迄今)
  • Editorial Board, London Journals Press (2016.9-迄今)
  • Editorial Board, International Journal of Advanced Research in Physical Science (2016.8-迄今)
  • Editorial Board, The Open Access Journal of Science and Technology (2016.3-迄今)
  • Editorial Board, Mediterranean Journal of Physics (2016.1-迄今)
  • Editorial Board, Journal of Lasers, Optics & Photonics (2015.9-迄今)
  • Editorial Board, Open Journal of Physical Chemistry (2011.3-迄今)
  • Editorial Board, Chinese Journal of Physics (2017.12-2022.4)


國際期刊評審委員:

  • Nature Chemistry
  • Nature Communications
  • Scientific Reports
  • Journal of Chemical Physics
  • Journal of Chemical Theory and Computation
  • Physical Chemistry Chemical Physics
  • Journal of Physical Chemistry Letters
  • Journal of Physical Chemistry
  • Chemical Science
  • Nanoscale
  • Journal of Materials Chemistry C
  • RSC Advances
  • The Chemical Record
  • Journal of Computational Chemistry
  • International Journal of Quantum Chemistry
  • Theoretical Chemistry Accounts
  • Molecular Physics
  • Chemical Physics Letters
  • Journal of Applied Physics
  • Communications Chemistry
  • Chemistry—A European Journal
  • Journal of the Taiwan Institute of Chemical Engineers
  • Bulletin of the Chemical Society of Japan
  • Molecular Simulation
  • Molecules
  • Synthetic Metals
  • Journal of Electronic Materials
  • Symmetry
  • Entropy
  • Chinese Journal of Physics
  • Acta Physico-Chimica Sinica
  • Journal of Molecular Graphics and Modelling
  • Structural Chemistry
  • Journal of Theoretical and Computational Chemistry
  • Computation
榮譽
  • 國立臺灣大學教學優良教師 (2023)
  • 國立臺灣大學教學優良教師 (2021)
  • 國立臺灣大學教學優良教師 (2019)
  • 科技部優秀年輕學者研究計畫 (2018-2021)
  • 國立臺灣大學教學優良教師 (2018)
  • 中央研究院年輕學者研究著作獎 (2017)
  • 台灣物理學會傑出年輕物理學者獎 (2016)
  • 科技部優秀年輕學者研究計畫 (2015-2018)
  • 國立臺灣大學學術研究生涯發展計畫 (2015-2016)
  • 救國團博學類青年獎章 (2015)
  • 世界科學院TWAS青年學者 (2013-2017)
  • 國立臺灣大學學術研究生涯發展計畫 (2013-2015)
  • 國家理論科學研究中心年輕理論學者獎 (2012)
  • 國際理論化學物理協會EPSON年輕學者獎 (2011)
  • 中華民國圍棋協會二段棋士 (1999)
教學與研究領域
教學:
本組於2014年2月起開設選修課程:密度泛函理論 (Density Functional Theory)。歡迎有興趣的學生選修。

研究:
"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation." P. A. M. Dirac (1929)

為了迎接這項挑戰,本組致力於研究能適用於奈米系統(約含100~1,000,000個電子)的新量子理論(如:熱輔助佔據密度泛函理論),並應用其於預測新穎奈米系統(如:莫比烏斯分子、三角形石墨烯奈米片、線狀與環狀碳鏈、線狀與環狀硼奈米帶等)之特性,以及開發新能源材料(如:太陽能電池及儲氫材料等)。

由於奈米科學為跨學科領域研究,需打破傳統的學科領域界限,以取得更具啟發性之成果。
依研究性質分為:
1. 理論研究(新密度泛函理論之發展):以物理學為主,數學與化學為輔。
2. 計算研究(新密度泛函理論之應用):目前所涉及的知識包括物理學、化學與材料科學,並在未來將進一步擴展到其他學科領域(如:生物學與天文學)。

本組的具體研究主題如下:

1. Kohn-Sham密度泛函理論
Kohn-Sham Density Functional Theory (KS-DFT)
A. 目標:
a. 交換能密度泛函 Exchange Energy Density Functional
b. 相關能密度泛函 Correlation Energy Density Functional
c. 線性標度算法 Linear-Scaling Methods
B. 方向:
a. 自我作用誤差 Self-Interaction Error
b. 非共價作用誤差 Noncovalent Interaction Error
c. 靜態相關誤差 Static Correlation Error
C. 適用系統:
大約包含100~1,000個電子(薛丁格方程式及高精確量子理論,因計算量過大而不適用)

2. 熱輔助佔據密度泛函理論
Thermally-Assisted-Occupation Density Functional Theory (TAO-DFT)
A. 密度泛函近似 Density Functional Approximations
B. 虛擬溫度 Fictitious Temperature
C. 基本性質 Fundamental Properties
D. 擴展 Extensions
E. 全始算分子動力學 Ab Initio Molecular Dynamics
F. 奈米尺度強相關電子系統 Strongly Correlated Electron Systems at the Nanoscale

3. 無軌域密度泛函理論
Orbital-Free Density Functional Theory
A. 目標:
a. 動能密度泛函 Kinetic Energy Density Functional
b. 膺勢 Pseudopotentials
B. 方向:
a. 線性反應理論 Linear Response Theory
b. 特殊動能密度泛函 KEDFs in Certain Situations
c. 可轉移膺勢 Transferable Pseudopotentials
C. 適用系統:
大約包含1,000~1,000,000個電子(Kohn-Sham密度泛函理論,因計算量過大而不適用)

4. 含時密度泛函理論
Time-Dependent Density Functional Theory
A. 交換相關作用量泛函 Exchange-Correlation Action Functional
B. 激發態 Excited States
C. 即時電子動力學 Real-Time Electron Dynamics
D. 量子傳輸 Quantum Transport
E. 量子流體力學 Quantum Hydrodynamics

5. 新能源材料
Materials for New Energy
A. 有機太陽能電池 Organic Solar Cells
B. 儲氫材料 Hydrogen Storage Materials
代表著作

Web of Science

Google Scholar

[With a Landmark (10,400+ citations) paper. Total Citations: 19,400+]

(1) Chi-Yu Chen and Jeng-Da Chai*, "Effect of Oriented External Electric Fields on the Electronic Properties of Linear Acenes: A Thermally Assisted Occupation DFT Study", Molecules 29, 4245 (2024). [Times Cited: 0]

(2) Vidar Gudmundsson*, Vram Mughnetsyan, Hsi-Sheng Goan, Jeng-Da Chai, Nzar Rauf Abdullah, Chi-Shung Tang, Valeriu Moldoveanu, and Andrei Manolescu, "Magneto-Optical Properties of a Quantum Dot Array Interacting with a Far-Infrared Photon Mode of a Cylindrical Cavity", Phys. Rev. B 109, 235306 (2024). [Times Cited: 0]

(3) Yu-Yang Wang and Jeng-Da Chai*, "Spin Symmetry in Thermally-Assisted-Occupation Density-Functional Theory", Phys. Rev. A 109, 062808 (2024). [Times Cited: 0]

(4) Sonai Seenithurai and Jeng-Da Chai*, "Electronic Properties of Graphene Nano-Parallelograms: A Thermally Assisted Occupation DFT Computational Study", Molecules 29, 349 (2024). [Times Cited: 1] 

(5) Hung-Yi Tsai and Jeng-Da Chai*, "Real-Time Extension of TAO-DFT", Molecules 28, 7247 (2023). [Times Cited: 1] 

(6) Sonai Seenithurai and Jeng-Da Chai*, "TAO-DFT with the Polarizable Continuum Model", Nanomaterials 13, 1593 (2023). [Times Cited: 3] 

(7) Chi-Chun Chen and Jeng-Da Chai*, "Electronic Properties of Hexagonal Graphene Quantum Rings from TAO-DFT", Nanomaterials 12, 3943 (2022). [Times Cited: 3] 

(8) Bo-Jyun Chen and Jeng-Da Chai*, "TAO-DFT Fictitious Temperature Made Simple", RSC Adv. 12, 12193 (2022). [Times Cited: 8] 

(9) Sonai Seenithurai and Jeng-Da Chai*, "Electronic Properties of Carbon Nanobelts Predicted by Thermally-Assisted-Occupation DFT", Nanomaterials 11, 2224 (2021). [Times Cited: 12] 

(10) Evgeny Epifanovsky, Andrew T. B. Gilbert, Xintian Feng, ..., Jeng-Da Chai, ..., Martin Head-Gordon*, John M. Herbert*, and Anna I. Krylov* et al., "Software for the Frontiers of Quantum Chemistry: An Overview of Developments in the Q-Chem 5 Package", J. Chem. Phys. 155, 084801 (2021). [Times Cited: 539]

(11) Shakeel Ahmad Khandy and Jeng-Da Chai*, "Origin of Pseudo Gap and Thermoelectric Signatures of Semimetallic Ru2TaGa: Structural Stability from Phonon Dynamics, Mechanical, and Thermodynamic Predictions", J. Phys. Chem. Solids 154, 110098 (2021). [Times Cited: 33] 

(12) Shakeel Ahmad Khandy and Jeng-Da Chai*, "Strain Engineering of Electronic Structure, Phonon, and Thermoelectric Properties of P-Type Half-Heusler Semiconductor", J. Alloys Compd. 850, 156615 (2021). [Times Cited: 54]

(13) Shaozhi Li and Jeng-Da Chai*, "TAO-DFT-Based Ab Initio Molecular Dynamics", Front. Chem. 8, 589432 (2020). [Times Cited: 8]

(14) Robert van Meer*, Oleg Gritsenko, and Jeng-Da Chai*, "Combining Density-Based Dynamical Correlation with a Reduced-Density-Matrix Strong-Correlation Description", Phys. Rev. A 102, 032815 (2020). [Times Cited: 5]

(15) Shu-Hao Yeh, Aaditya Manjanath, Yuan-Chung Cheng, Jeng-Da Chai*, and Chao-Ping Hsu*, "Excitation Energies from Thermally Assisted-Occupation Density Functional Theory: Theory and Computational Implementation", J. Chem. Phys. 153, 084120 (2020). [Times Cited: 8]

(16) Sonai Seenithurai and Jeng-Da Chai*, "TAO-DFT Investigation of Electronic Properties of Linear and Cyclic Carbon Chains", Sci. Rep. 10, 13133 (2020). [Times Cited: 26]

(17) Hong-Jui Huang, Sonai Seenithurai, and Jeng-Da Chai*, "TAO-DFT Study on the Electronic Properties of Diamond-Shaped Graphene Nanoflakes", Nanomaterials 10, 1236 (2020). [Times Cited: 10]

(18) Shakeel Ahmad Khandy and Jeng-Da Chai*, "Thermoelectric Properties, Phonon, and Mechanical Stability of New Half-Metallic Quaternary Heusler Alloys: FeRhCrZ (Z = Si and Ge)", J. Appl. Phys. 127, 165102 (2020). [Times Cited: 104]

(19) Shakeel Ahmad Khandy and Jeng-Da Chai*, "Robust Stability, Half-Metallic Ferrimagnetism and Thermoelectric Properties of New Quaternary Heusler Material: A First Principles Approach", J. Magn. Magn. Mater. 502, 166562 (2020). [Times Cited: 61]

(20) Qing Deng and Jeng-Da Chai*, "Electronic Properties of Triangle-Shaped Graphene Nanoflakes from TAO-DFT", ACS Omega 4, 14202 (2019). [Times Cited: 16]

(21) Sonai Seenithurai and Jeng-Da Chai*, "Electronic Properties of Linear and Cyclic Boron Nanoribbons from Thermally-Assisted-Occupation Density Functional Theory", Sci. Rep. 9, 12139 (2019). [Times Cited: 12]

(22) Fengyuan Xuan, Jeng-Da Chai*, and Haibin Su*, "Local Density Approximation for the Short-Range Exchange Free Energy Functional", ACS Omega 4, 7675 (2019). [Times Cited: 14]

(23) Jui-Hui Chung and Jeng-Da Chai*, "Electronic Properties of Möbius Cyclacenes Studied by Thermally-Assisted-Occupation Density Functional Theory", Sci. Rep. 9, 2907 (2019). [Times Cited: 19]

(24) Chia-Nan Yeh, Can Wu, Haibin Su*, and Jeng-Da Chai*, "Electronic Properties of the Coronene Series from Thermally-Assisted-Occupation Density Functional Theory", RSC Adv. 8, 34350 (2018). [Times Cited: 19]

(25) Sonai Seenithurai and Jeng-Da Chai*, "Electronic and Hydrogen Storage Properties of Li-Terminated Linear Boron Chains Studied by TAO-DFT", Sci. Rep. 8, 13538 (2018). [Times Cited: 29]

(26) Chih-Ying Lin, Kerwin Hui, Jui-Hui Chung, and Jeng-Da Chai*, "Self-Consistent Determination of the Fictitious Temperature in Thermally-Assisted-Occupation Density Functional Theory", RSC Adv. 7, 50496 (2017). [Times Cited: 32]

(27) Sonai Seenithurai and Jeng-Da Chai*, "Effect of Li Termination on the Electronic and Hydrogen Storage Properties of Linear Carbon Chains: A TAO-DFT Study", Sci. Rep. 7, 4966 (2017). [Times Cited: 24]

(28) Jeng-Da Chai*, "Role of Exact Exchange in Thermally-Assisted-Occupation Density Functional Theory: A Proposal of New Hybrid Schemes", J. Chem. Phys. 146, 044102 (2017). [Times Cited: 40]

(29) Chih-Wei Wang, Kerwin Hui, and Jeng-Da Chai*, "Short- and Long-Range Corrected Hybrid Density Functionals with the D3 Dispersion Corrections", J. Chem. Phys. 145, 204101 (2016). [Times Cited: 25]

(30) Chun-Shian Wu, Pei-Yin Lee, and Jeng-Da Chai*, "Electronic Properties of Cyclacenes from TAO-DFT", Sci. Rep. 6, 37249 (2016). [Times Cited: 48]

(31) Sonai Seenithurai and Jeng-Da Chai*, "Effect of Li Adsorption on the Electronic and Hydrogen Storage Properties of Acenes: A Dispersion-Corrected TAO-DFT Study", Sci. Rep. 6, 33081 (2016). [Times Cited: 42]

(32) Chia-Nan Yeh and Jeng-Da Chai*, "Role of Kekulé and Non-Kekulé Structures in the Radical Character of Alternant Polycyclic Aromatic Hydrocarbons: A TAO-DFT Study", Sci. Rep. 6, 30562 (2016). [Times Cited: 66]

(33) Hsiao-Ling Sun, Wei-Tao Peng, and Jeng-Da Chai*, "Assessment of the LFAs-PBE Exchange-Correlation Potential for High-Order Harmonic Generation of Aligned H2+ Molecules", RSC Adv. 6, 33318 (2016). [Times Cited: 3]

(34) Kerwin Hui and Jeng-Da Chai*, "SCAN-Based Hybrid and Double-Hybrid Density Functionals from Models without Fitted Parameters", J. Chem. Phys. 144, 044114 (2016). [Times Cited: 129]

(35) Yu-Ting Chen, Kerwin Hui, and Jeng-Da Chai*, "The van der Waals Interactions in Rare-Gas Dimers: The Role of Interparticle Interactions", Phys. Chem. Chem. Phys. 18, 3011 (2016). [Times Cited: 8]

(36) Chun-Shian Wu and Jeng-Da Chai*, "Electronic Properties of Zigzag Graphene Nanoribbons Studied by TAO-DFT", J. Chem. Theory Comput. 11, 2003 (2015). [Times Cited: 70]

(37) Yihan Shao, Zhengting Gan, Evgeny Epifanovsky, ..., Jeng-Da Chai, ..., Anna I. Krylov, Peter M. W. Gill, and Martin Head-Gordon* et al., "Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package", Mol. Phys. 113, 184 (2015). [Times Cited: 2,433]

(38) Wei-Tao Peng and Jeng-Da Chai*, "Assessment of Asymptotically Corrected Model Potentials for Charge-Transfer-Like Excitations in Oligoacenes", Phys. Chem. Chem. Phys. 16, 21564 (2014). [Times Cited: 7]

(39) Jeng-Da Chai*, "Thermally-Assisted-Occupation Density Functional Theory with Generalized-Gradient Approximations", J. Chem. Phys. 140, 18A521 (2014). [Times Cited: 67]

(40) Chi-Ruei Pan, Po-Tung Fang, and Jeng-Da Chai*, "Asymptotic Correction Schemes for Semilocal Exchange-Correlation Functionals", Phys. Rev. A 87, 052510 (2013). [Times Cited: 10]

(41) Chen-Wei Tsai, Yu-Chuan Su, Guan-De Li, and Jeng-Da Chai*, "Assessment of Density Functional Methods with Correct Asymptotic Behavior", Phys. Chem. Chem. Phys. 15, 8352 (2013). [Times Cited: 48]

(42) Jeng-Da Chai* and Po-Ta Chen, "Restoration of the Derivative Discontinuity in Kohn-Sham Density Functional Theory: An Efficient Scheme for Energy Gap Correction", Phys. Rev. Lett. 110, 033002 (2013). [Times Cited: 45]

(43) Kenji Sumida, David Stuck, Lorenzo Mino, Jeng-Da Chai, Eric D. Bloch, Olena Zavorotynska, Leslie J. Murray, Mircea Dinca, Sachin Chavan, Silvia Bordiga*, Martin Head-Gordon*, and Jeffrey R. Long*, "Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M-BTT Metal-Organic Frameworks", J. Am. Chem. Soc. 135, 1083 (2013). [Times Cited: 125]

(44) You-Sheng Lin, Guan-De Li, Shan-Ping Mao, and Jeng-Da Chai*, "Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections", J. Chem. Theory Comput. 9, 263 (2013). [Times Cited: 554]

(45) Jeng-Da Chai* and Shan-Ping Mao, "Seeking for Reliable Double-Hybrid Density Functionals without Fitting Parameters: The PBE0-2 Functional", Chem. Phys. Lett. 538, 121 (2012). [Times Cited: 110]

(46) You-Sheng Lin, Chen-Wei Tsai, Guan-De Li, and Jeng-Da Chai*, "Long-Range Corrected Hybrid Meta-Generalized-Gradient Approximations with Dispersion Corrections", J. Chem. Phys. 136, 154109 (2012). [Times Cited: 98]

(47) Jeng-Da Chai*, "Density Functional Theory with Fractional Orbital Occupations", J. Chem. Phys. 136, 154104 (2012). [Times Cited: 130]

(48) Jeng-Da Chai and Martin Head-Gordon, "Long-Range Corrected Double-Hybrid Density Functionals", J. Chem. Phys. 131, 174105 (2009). [Times Cited: 320]

(49) Jeng-Da Chai and Martin Head-Gordon, "Optimal Operators for Hartree-Fock Exchange from Long-Range Corrected Hybrid Density Functionals", Chem. Phys. Lett. 467, 176 (2008). [Times Cited: 64]

(50) Jeng-Da Chai and Martin Head-Gordon, "Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections", Phys. Chem. Chem. Phys. 10, 6615 (2008). [Times Cited: 10,410]

(51) Jeng-Da Chai and Martin Head-Gordon, "Systematic Optimization of Long-Range Corrected Hybrid Density Functionals", J. Chem. Phys. 128, 084106 (2008). [Times Cited: 3,034]

(52) Jeng-Da Chai and John D. Weeks, "Orbital-Free Density Functional Theory: Kinetic Potentials and Ab Initio Local Pseudopotentials", Phys. Rev. B 75, 205122 (2007). [Times Cited: 39]

(53) Jeng-Da Chai, D. Stroud, J. Hafner, and G. Kresse, "Dynamic Structure Factor of Liquid and Amorphous Ge From Ab Initio Simulations", Phys. Rev. B 67, 104205 (2003). [Times Cited: 39]